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Uniqueness of the Ground State in Weak Perturbations
of Non-Interacting Gapped Quantum Lattice Systems
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We consider a general weak perturbation of a non-interacting quantum lattice
system with a non-degenerate gapped ground state. We prove that in a finite
volume the dependence of the ground state on the boundary condition expo-
nentially decays with the distance to the boundary, which implies in particu-
lar that the infinite-volume ground state is unique. Also, equivalent forms of
boundary conditions for ground states of general finite quantum systems are
discussed.
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1. INTRODUCTION AND RESULTS

We consider a quantum system on a lattice, which is a weak perturbation
of a non-interacting system with a non-degenerate gapped ground state. A
rigorous perturbation theory for such models, relying on a suitable ansatz
for the ground state or zero-temperature path space expansions, was devel-
oped in refs. 2, 3, 5–7 and 10. In particular, it is known that the weakly
interacting model has a ground state with a spectral gap, which can be
obtained as the thermodynamic weak∗-limit of ground states correspond-
ing to finite volume restrictions of the Hamiltonian with empty or periodic
boundary conditions. The question we address in the present paper is the
uniqueness of the infinite volume ground state. In general, a ground state
in a finite volume can be sensitive to boundary conditions, which can lead
to different infinite volume states in the limit. We prove that for the model
in question this is not the case.
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For translation-invariant ground states the uniqueness was proved by
Matsui in refs. 8 and 9. His method relies on the specific energy func-
tional, and the translational invariance is very essential for the proof.
Intuitively one would expect, however, that the uniqueness should hold
regardless of this invariance, as long as the perturbation is uniformly weak
enough. We give a different proof, where the translational invariance plays
no role. We consider ground states with most general boundary condi-
tions in a finite volume and show that the dependence of such a state
on the boundary condition exponentially decays with the distance to the
boundary. The infinite volume uniqueness then follows as a straightfor-
ward consequence. Physically this result is quite natural and expected, but
the mathematically rigorous analysis of ground states with general quan-
tum boundary conditions is not obvious. Though in this article we restrict
our attention to a model with a single non-degenerate ground state, we
expect that the method developed here can be used to study completeness
in more general situations, where, in particular, ground states with spon-
taneously broken translation symmetry (domain walls) can be present.

We give now precise statements.
We consider a quantum “spin” system on the lattice Z

ν . Suppose that
for each x ∈Z

ν there is a Hilbert space Hx (possibly infinite-dimensional)
associated with this site. For the restriction to a finite volume �⊂ Z

ν we
will use the notation

H� :=⊗x∈�Hx.

The (formal) Hamiltonian of the model consists of a trivial non-interact-
ing Hamiltonian and a perturbation

H =H0 +�.

Here H0 is the non-interacting Hamiltonian

H0 =
∑

x∈Z
ν

hx.

We assume that each hx is a non-negative self-adjoint, possibly unbounded
operator on Hx with a non-degenerate ground state �x ∈Hx

hx�x =0
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and a uniform in x spectral gap

hx |Hx��x �1 (1)

(this is necessary and sufficient in order that the non-interacting Hamilto-
nian have a non-degenerate ground state and a spectral gap �1; here and
in the sequel we slightly abuse the notation by denoting the one-dimen-
sional subspace spanned by �x with the same symbol). In order to define
the perturbation � we fix a finite subset �0 ⊂Z

ν (range of the perturba-
tion) and set

�=
∑

x∈Z
ν

φx, (2)

where φx is a self-adjoint bounded operator on H�0+x (here �0 + x is a
shift of �0). We will assume that the perturbation is small in the sense
that supx∈Z

ν ‖φx‖ is finite and small enough.
The existence of a ground state for such systems can be handled

as follows. Let � ⊂ Z
ν be a finite volume and H� the restriction of the

Hamiltonian H to � with empty boundary conditions

H� :=H�,0 +��,

where

H�,0 :=
∑

x∈�

hx, �� :=
∑

x∈Z
ν :�0+x⊂�

φx. (3)

Since �� is bounded, H� is self-adjoint with Dom (H�)= Dom (H�,0). In
what follows we use the local algebra:

A∞ :=
⋃

�⊂Z
ν
,|�|<∞

B(H�),

where for any finite � by B(H�) we denote the algebra of bounded oper-
ators in H� (A is a C∗-inductive limit of B(H�); see ref. 2 for generalities
on quasi-local C∗-algebras).

The following theorem was proved in ref. 10 (also see refs.11 and 6):
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Theorem 1. There exists a constant c, depending only on the per-
turbation range �0, such that if supx ‖φx‖ < c then for any finite � the
Hamiltonian H� has a non-degenerate ground state �� ∈H� with a spec-
tral gap �1/2

H��� =E���, H�|H���� � (E� +1/2)1.

Moreover, let ωgs,� be the corresponding ground state on B(H�)

ωgs,�(A) := (A��,��)

(�� is assumed to be normalized). Let �↗Z
ν mean that � converges to

Z
ν in the sense that it eventually contains any finite subset. Then there

exists a state ωgs,∞ on the local algebra A∞, which is the thermodynamic
weak∗-limit of the finite-volume ground states

ωgs,�(A)
�↗Z

ν

−−−→ωgs,∞(A) for any A∈A∞.

In order to discuss possible non-uniqueness of the ground state we
need a general definition of a ground state. We define it using the stan-
dard local stability condition (see ref. 2).

Recall first that if G is a (possibly unbounded) self-adjoint and A a
bounded operators acting in the same Hilbert space then, by definition,
their commutator [G,A] is a bounded operator B iff Dom (G) is invari-
ant under A and

GAv −AGv =Bv

for all v ∈ Dom (G). For any finite � let

D� :={A∈B(H�) : [H�,0,A] is bounded},

where H�,0 is defined in (3). Clearly, D�1 ⊂ D�2 for �1 ⊂ �2, so we can
define

D :=
⋃

�⊂Z
ν
,|�|<∞

D� ⊂A∞.



Uniqueness of the Ground State 123

For any � consider the set � obtained by adding all sites interacting
with �

� :=
⋃

x∈Z
ν :(�0+x)∩��=∅

(�0 +x).

Now for any finite � and A∈D� the formal commutator δ(A)≡ [H,A] is
defined rigorously by

δ(A) := [H�,A]= [H�,0,A]+ [��,A]∈B(H�).

This consistently defines δ(A)∈A∞ for all A∈D. We adopt now the fol-
lowing

Definition 1. We say that a locally normal (i.e., given by a density
matrix) state ω on A∞ is an infinite volume ground state of the Hamiltonian
H , if

ω(A∗δ(A))�0

for all A∈D.

It will be convenient to consider also ground states in finite volumes;
see ref. 4 for a discussion of possible definitions of equilibrium states in
finite quantum systems with general boundary conditions.

For any �, let �o be the part of � not interacting with the exterior

�o :=�\
⋃

x∈Z
ν :(�0+x)∩(Z

ν\�)�=∅
(�0 +x),

so that �o ⊂� and hence δ(A)∈B(H�) if A∈D�o .

Definition 2. For any finite �, we say that a normal state ω� on
B(H�) is a finite volume ground state of the Hamiltonian H , if

ω(A∗δ(A))�0 (4)

for all A∈D�o .
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This definition plays a central role in the paper. It is possible to
describe boundary conditions explicitly: (see Appendix A)

Clearly, a restriction of an infinite volume ground state to a finite vol-
ume is a finite volume ground state in the above sense; on the other hand,
a weak∗-limit of finite volume ground states is an infinite volume ground
state. The state ωgs,� of Theorem 1 satisfies Definition 2, because δ(A)=
[H�,A] for A∈D�o . Therefore the state ωgs,∞ of Theorem 1 is an infinite
volume ground state in the sense of Definition 1.

Now we state the main result of the present paper as the following
theorem.

Theorem 2. There exist positive constants c, c1, c2, depending only
on the range �0 and with c2 < 1, such that if supx ‖φx‖<c then for any
finite volume �, any two finite-volume ground states ω′

�,ω′′
� of the Ham-

iltonian H in � in the sense of Definition 2, and any I ⊂� one has

|ω′
�(A)−ω′′

�(A)|� c
|I |
1 c

dist (I,Z
ν\�o)

2 ‖A‖ if A∈B(HI ). (5)

Taking the limit �↗Z
ν , we immediately obtain

Corollary. If supx ‖φx‖<c then the state ωgs,∞ of Theorem 1 is a
unique infinite-volume ground state of the Hamiltonian H .

Our proof uses some form of cluster expansions and is rather tech-
nical. Therefore, we first fix ideas in Section 2 by considering the simpler
special case of perturbations preserving the ground state. The general case
is treated in Section 3.

2. PERTURBATIONS PRESERVING THE GROUND STATE

In order to fix ideas, in this section, we prove Theorem 2 for the spe-
cial case of perturbations not destroying the ground state. For any �′ ⊂Z

ν

we denote

��′,0 :=⊗x∈�′�x.

We assume in this section that

φx��0+x,0 =0, ∀x.

It follows then that for any � the vector ��,0 is an eigenvector of the
operator H�

H���,0 =0.
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If supx ‖φx‖ is small enough, namely supx ‖φx‖<1/|�0|, then by the spec-
tral gap condition |�0|−1 ∑

y∈�0+x hy +φx �0 and hence H� �0; so ��,0
is a ground state of H� (i.e., �� =��,0 in this case). We will see that the
difference between this ground state and any other ground state ω in �

in the sense of Definition 2 can be estimated as in (5). To this end it will
suffice to use the local stability condition (4) with a family of single-site
operators A. Let us denote

H′
x =Hx ��x.

For any ux ∈ H′
x we introduce the one-dimensional (“creation” or “spin

raising”) operator ûx on Hx by

ûxv = (v,�x)ux, v ∈Hx. (6)

(As usual, we can also consider ûx as acting on H�′ for any �′ �x.) The
adjoint operator û∗

x is then given by

û∗
xv = (v, ux)�x, v ∈Hx.

These adjoints are the operators which we will substitute into (4). This
choice of trial operators is natural, since we expect that, when used on a
state, they should generally lower its energy. In what follows, if S is a vec-
tor or a subspace in the Hilbert space H�′ for some �′, then by PS we
shall denote the corresponding projector onto S in H�′ ; �′ is not indi-
cated in this notation, because which �′ is meant in a particular situation
will be clear from the form of the set S.

We claim now that using the local stability condition (4) with opera-
tors û∗

x for some x ∈�o yields the inequality

ω(PH′
x
)� 1

2|�x |
∑

y∈�x

ω(PH′
y
), (7)

where �x is a neighborhood of the site x

�x =
⋃

y:�0+y�x

(�0 +y).
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We postpone the proof of this claim, and show now how it implies the
desired estimate (5). Note first that by considering these inequalities for all
x ∈�o we can conclude that

ω(PH′
x
)�

(
1
2

)dist (x,Z
ν\�o)/diam (�0)

. (8)

Indeed, for any x ∈� we have ω(PH′
x
)� 1. For any x ∈�o using (7)

we have ω(PH′
x
) � 1/2. For any x such that �x ⊂ �o using (7) we have

ω(PH′
x
)�1/4, etc.: (8) is proved by iterations.

The exponential bound (8) for expectations of single-site projectors
easily implies the estimate (5) for general local operators. Indeed, suppose
that A∈B(HI ) for some I ⊂�. In order to estimate ω(A)− (A��,0,��,0)

we represent it as

ω(A)− (A��,0,��,0) = ω(P�I,0APHI ��I,0)+ω(PHI ��I,0AP�I,0)

+ω(PHI ��I,0APHI ��I,0)+ (ω(P�I,0AP�I,0)

− (A��,0,��,0)). (9)

Note that

PH�I
���I ,0 �

∑

y∈�I

PH′
y
. (10)

Using Cauchy inequality, we estimate now the first term on the r.h.s. of (9)

|ω(P�I,0APHI ��I,0)| � (ω(PHI ��I,0))
1/2(ω(P�I,0AA∗P�I,0))

1/2

� (ω(PHI ��I,0))
1/2‖A‖

� |I |1/2
(

1
2

)dist (I,Z
ν\�o)/2 diam (�0)

‖A‖,

where in the last inequality we used estimates (10) and (8). The second
and third terms in (9) are estimated in the same manner. For the final
fourth term we have

ω(P�I,0AP�I,0)− (A��,0,��,0)=ω(B),

where B = P�I,0AP�I,0 − (A��,0,��,0)1. Since A ∈ B(HI ) ⊂ B(H�), we
have P�I,0AP�I,0 = (A��,0,��,0)P�I,0 and hence

B =−(A��,0,��,0)PHI ��I,0 .
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Now ω(B) can be estimated using inequalities (10) and (8) analogously to
the other three terms in (9). That proves Theorem 2 in our present special
case.

In the remaining part of the section we show how the inequality (7)
follows from the local stability condition.

If ux ∈ Dom (hx)∩H′
x , then

[hx, û
∗
x ]=−ĥxux

∗
.

It follows that:

δ(̂u∗
x)= [hx, û

∗
x ]+ [�x, û

∗
x ]=−ĥxux

∗ + [�x, û
∗
x ],

where

�x =
∑

y:�0+y�x

φy. (11)

Condition (4) implies then that for x ∈�o

ω(̂uxĥxux

∗
)−ω(̂ux�xû

∗
x)+ω(̂uxû

∗
x�x)�0. (12)

We argue now that (12) implies

ω(PH′
x
)�‖�x‖ω(PH′

x
)−ω(PH′

x
�x). (13)

Indeed, let us first consider the case dim Hx <∞. For any unit vector ux ∈
H′

x we have

ûx û
∗
x =Pux

and

ûx�xû
∗
x �‖�x‖ûx û

∗
x =‖�x‖Pux .

Now if ux is an eigenvector of hx with an eigenvalue λ, then (12) implies

λω(Pux )�‖�x‖ω(Pux )−ω(Pux �x). (14)
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Let ux,1, . . . , ux,n be an orthonormal eigenbasis for hx in the subspace H′
x .

By the spectral gap condition, the corresponding eigenvalues are all not
less than 1. Summing now the inequalities (14) for these eigenvectors and
using the identity

∑

k

Pux,k
=PH′

x
, (15)

we obtain (13).
In the case of infinite-dimensional Hx one can first approximate hx by

an operator with pure point spectrum. For a small positive ε consider the
function κε : a �→ ε[a/ε], where [·] is the integer part. Then hx,ε := κε(hx)

has pure point spectrum, while the norm of the difference gx,ε :=hx,ε −hx

does not exceed ε. Let ux,1, ux,2, . . . be the eigenbasis for hx,ε ; the corre-
sponding eigenvalues then are all not less than 1 − ε. For any ux ∈ H′

x ∩
Dom (hx),

ûx ĥxux

∗ = ûx ĥx,εux

∗ +Pux gx,ε .

Now if ux is an eigenvector of hx,ε , then we have the inequality

(1− ε)ω(Pux )+ω(Pux gx,ε)�‖�x‖ω(Pux )−ω(Pux �x), (16)

analogous to the inequality (14). Again we have the identity (15), now
with a strongly convergent series on the l.h.s. Summing the inequalities
(16) for all eigenvectors and using at this point the normality of the state
to take the limit, we obtain

(1− ε)ω(PH′
x
)+ω(PH′

x
gx,ε)�‖�x‖ω(PH′

x
)−ω(PH′

x
�x).

Since |ω(PH′
x
gx,ε)|� ε, letting ε →0 proves (13).

By definition (11) of �x its norm does not exceed |�0|supx ‖φx‖.
Hence it follows from (13) that:

(1−|�0|sup
x

‖φx‖)ω(PH′
x
)� |ω(PH′

x
�x)|� (ω(PH′

x
))1/2(ω(�2

x))
1/2

by the Cauchy inequality. Therefore,

ω(PH′
x
)� (1−|�0|sup

x
‖φx‖)−2ω(�2

x). (17)
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Recall that by our assumption in this section �x��x,0 =0 and hence

�2
x =PH�x ���x,0�

2
xPH�x ���x,0 �‖�2

x‖PH�x ���x,0 .

It follows then from (17) and (10) that

ω(PH′
x
)�

( |�0|supx ‖φx‖
1−|�0|supx ‖φx‖

)2 ∑

y∈�x

ω(PH′
y
),

which implies the desired inequality (7), if supx ‖φx‖ is sufficiently small.

3. PROOF OF THEOREM 2 IN THE GENERAL CASE

We will prove Theorem 2 in its general form by a suitable gener-
alization of the argument used in Section 2. As before, we can obtain
one ground state in � simply by considering the Hamiltonian H� with
empty boundary conditions. As stated in Theorem 1, this Hamiltonian
has a non-degenerate ground state, corresponding to the vector ��, which
can in principle be used for comparison with other, general ground states.
However, the new element now is that the state (·��,��) is no longer a
product of single site vector states, and hence the deviation of a general
ground-state from this special state cannot be measured simply by expec-
tations of single-site projectors. This difficulty can be handled by appro-
priate transformations in the local algebra. The ground-state vector ��

and the product vector ��,0 can be obtained from one another using a
suitable “dressing transformation”. By using related automorphisms of the
algebra one can in a sense reduce the problem to the “non-entangled”
case of Section 2. The deviation from (·��,��) will now be measured
by some quasi-local positive perturbations Qx of the projectors PH′

x
(see

Lemma 2). The statement of Theorem 2 will then follow from the small-
ness of those deviations by some sort of cluster expansion.

In this section, we adopt for brevity the following convention. We
will denote by c and ε various (generally different in different formulas)
positive constants, which do not depend on the volume �, though may
depend on the interaction range �0. We write ε if this constant can be
chosen arbitrarily small by choosing supx ‖φx‖ small enough; on the other
hand the constant c is typically greater than 1 and does not depend on
supx ‖φx‖. We will omit some standard cumbersome calculations typical of
cluster expansions.
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We begin with some preliminaries concerning the structure of the
ground state vector �� and related “dressing transformations”. An impor-
tant role in our proof is played by the following ansatz for this vector
(ref. 10, also see refs. 1 and 7).

For any I ⊂� set

H′
I =⊗x∈IH′

x,

where H′
x =Hx ��x (with H′

∅ ≡C). It follows that:

H� ���,0 =
⊕

∅�=I⊂�

H′
I ⊗��\I,0. (18)

Vectors from H′
I will be denoted by uI , vI , etc. For each uI ∈H′

I we intro-
duce a “creation” operator ûI in HI by

ûI v = (v,�I,0)uI , v ∈HI ,

like in (6) (with û∅ a scalar operator). A useful property of these operators
is that for any I , J and uI , vJ

ûI v̂J =
{

0 if I ∩J �=∅,

̂uI ⊗vJ if I ∩J =∅.

In particular, they commute. For any v ∈H� such that (v,��,0)=1 there
exists a unique collection {vI ∈H′

I }∅�=I⊂� such that exp
(∑

∅�=I⊂� v̂I

)
��,0=v

(these vI can be obtained by truncation from components of v appearing
in the decomposition (18)). Let �̃� be the ground state vector of H� nor-
malized so that (�̃�,��,0) = 1 (i.e., �̃� := ��/(��,��,0)). Initially the
non-degeneracy of the ground state and its non-orthogonality to ��,0 is
clear from the usual finite-volume perturbation theory for sufficiently weak
perturbations in each particular volume, and it can be shown that the esti-
mate for the perturbation, which ensures this property, can actually be
chosen uniform in the volume. Let {v(gs)

I ∈ H′
I }∅�=I⊂� be the correspond-

ing collection such that

�̃� = exp
( ∑

∅�=I⊂�

v̂
(gs)
I

)
��,0.
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Lemma 1. (ref. 10) For any ε > 0, if supx ‖φx‖ is sufficiently small
then

max
x∈�

∑

I⊂�:x∈I

‖v(gs)
I ‖ε−(dI +1) �1, (19)

where dI is the minimal length of a connected graph containing I .

In what follows we will use the (non-involutive and non-norm-
preserving) automorphism α on B(H�) given by

α(A)= exp
( ∑

∅�=I⊂�

v̂
(gs)
I

)
A exp

(−
∑

∅�=I⊂�

v̂
(gs)
I

)
. (20)

We denote the inverse automorphism by α− and also denote α∗(·) ≡
(α(·))∗. A useful property of α (and similarly α−, α∗) is that it can be
expanded into a commutator series

α(A)=
∞∑

s=0

(−1)s

s!

∑

∅�=I1,... ,Is⊂�

[. . . [A, v̂
(gs)
I1

], . . . , v̂
(gs)
Is

]. (21)

If A∈B(HI ) for some I ⊂�, then the summation in the above series can
be restricted to those terms, where Ik ∩ I �=∅ for all k, because the remain-
ing terms vanish due to the commutativity of the creation operators. In
particular, using this expansion and Lemma 1, it is easy to obtain an esti-
mate of the form

‖α(A)‖� c|I |‖A‖, A∈B(HI ) (22)

with some c>1.
Commutativity of creation operators implies for any uI

α(̂uI )=α−(̂uI )= ûI . (23)

Let H̃� =H� −E�1, where E� is the ground state energy of H�, so
that

H̃��� =0. (24)
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There is a convenient commutator expansion for α−(H̃�) − H�,0. Note
first that for any uI ∈H′

I ∩ Dom (HI,0), I ⊂�,

[H�,0, ûI ]= ĤI,0uI . (25)

Using (23), (24), it follows that:

α−(H̃�)̂uI��,0 = α−(H̃�ûI )��,0

= α−([H̃�, ûI ])��,0

= α−([H�, ûI ])��,0

= α−([H�,0, ûI ])��,0 +α−([��, ûI ])��,0

= ĤI,0uI��,0 +α−([��, ûI ])��,0.

Hence α−(H̃�)−H�,0 is a bounded operator such that

(α−(H̃�)−H�,0)̂uI��,0 =α−([��, ûI ])��,0

=
∞∑

s=0

1
s!

∑

x:�0+x⊂�
(�0+x)∩I �=∅

∑

∅�=I1,... ,Is⊂�
Ik∩(�0+x)�=∅∀k

[. . . [[φx, ûI ], v̂(gs)
I1

], . . . , v̂
(gs)
Is

]��,0. (26)

After these preliminaries we begin the proof of Theorem 2. First we estab-
lish an analog of the estimate (8). Let us fix some finite volume � with the
interior �o and consider the automorphism α : B(H�o)→B(H�o) defined
as in (20), but with respect to the set �o (and w.r.t. the correspond-
ing Hamiltonian H�o and its ground state ��o .) Let ux,1, ux,2, . . . be an
orthonormal basis in H′

x for some x ∈�o and set

Qx =
∑

k

α∗(̂u∗
x,k)α(̂u∗

x,k).

It is easy to see that Qx does not depend on the choice of the basis. If
dim H′

x = ∞, then the r.h.s. is an infinite sum of non-negative operators;
it is strongly convergent because

∑

k

A∗ûx,kB
∗Bû∗

x,kA�‖B∗B‖
∑

k

A∗ûx,kû
∗
x,kA=‖B∗B‖A∗PH′

x
A.

We will prove now
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Lemma 2. If ω is a ground state in � then

ω(Qx)� ε dist (x,Z
ν\�o). (27)

Proof. We follow the argument in Section 2, but now use the local
stability condition (4) with operators of the form α(̂u∗

x), x ∈�o, instead of
û∗

x

ω(α∗(̂u∗
x)[H�,α(̂u∗

x)])

=ω(α∗(̂u∗
x)[H�o,α(̂u∗

x)])+ω
(
α∗(̂u∗

x)
[ ∑

y:�0+y⊂�
�0+y /∈�o

φy, α(̂u∗
x)

])
�0,

(28)

where we have isolated the boundary interaction. Next we write

[H�o,α(̂u∗
x)] = [H̃�o, α(̂u∗

x)]

= α([α−(H̃�o), û∗
x ])

= α([H�o,0, û
∗
x ])+α([α−(H̃�o)−H�o,0, û

∗
x ])

= −α
(
ĥxux

∗)+α([α−(H̃�o)−H�o,0, û
∗
x ]).

Let

α−(H̃�o)−H�o,0 =
∑

J⊂�o

J ,

where the operator J is defined by the sum of those terms in the expan-
sion (26) for which (�0 + x) ∪ (∪kIk) = J . Note that [J , û∗

x ] = 0 if x /∈ J .
Let

x =
∑

J�x

J

it follows then that:

[H�o,α(̂u∗
x)]=−α

(
ĥxux

∗)+ [α(x), α(̂u∗
x)].

Lemma 1 implies

‖J ‖� εdJ (29)
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and this in turn implies ‖α(x)‖� ε by (22). Now one can proceed in the
same manner as in Section 2 by choosing orthonormal eigenvectors of hx

and adding corresponding inequalities (28). This yields

ω(Qx)�2(ω(Qx))
1/2(ω(α∗(x)α(x)))

1/2 + ε dist (x,Z
ν\�o), (30)

because

∣∣∣
∑

k

ω(α∗(̂u∗
x,k)α(̂u∗

x,k)α(x))

∣∣∣ = |ω(Qxα(x))|

� (ω(Qx))
1/2

(
ω(α∗(x)α(x))

)1/2
,

∣∣∣
∑

k

ω(α∗(̂u∗
x,k)α(x)α(̂u∗

x,k))

∣∣∣ �
∑

k

‖α(x)‖ω(α∗(̂u∗
x,k)α(̂u∗

x,k))

� εω(Qx)

and because by similar estimates and Lemma 1

∣∣∣
∑

k

ω
(
α∗(̂u∗

x,k)
[ ∑

y:�0+y⊂�
�0+y /∈�o

φy, α(̂u∗
x,k)

])∣∣∣� ε dist (x,Z
ν\�o).

Inequality (30) implies

ω(Qx)�4
(
ω(α∗(x)α(x))+ ε dist (x,Z

ν\�o)
)
. (31)

By Cauchy inequality

ω(α∗(x)α(x))�
∑

I�x,J�x

|ω(α∗(I )α(J ))|

�
∑

I�x,J�x

(
ω(α∗(I )α(I ))

)1/2(
ω(α∗(J )α(J ))

)1/2
(32)

=
(∑

I�x

(
ω(α∗(I )α(I ))

)1/2
)2

.

We will now estimate this expression using the following Lemma.
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Lemma 3. There exists a constant c such that if A ∈ B(HI ) and
A�I,0 =0 for some non-empty I ⊂�o then

α∗(A)α(A)�‖A‖2c|I | ∑

x∈I

Qx.

Proof. Without loss of generality assume that ‖A‖� 1. We have to
show that B �0, where

B =
∑

x∈I

Qx − c−|I |α∗(A)α(A).

This is equivalent to showing that α−(B)−λ is invertible for any negative
λ, because α−(B) is similar to B. To this end using (21) we expand

α−(Qx) =
∑

k

α−(α∗(̂u∗
x,k))̂u

∗
x,k

=
∑

k

∞∑

p,q=0

1
p!q!

∑

I1,... ,Ip :
Is�x ∀s

∑

J1,... ,Jq :
∀t ∃s:Jt∩Is �=∅

[. . . [[. . . [̂ux,k, v̂
(gs)∗
I1

], . . . , v̂
(gs)∗
Ip

], v̂(gs)
J1

], . . . , v̂
(gs)
Jq

]̂u∗
x,k.

It is easy to see from this expression and Lemma 1 that

α−(Qx)=
(

1+
∑

J�x

Rx,J

)
PH′

x
,

where Rx,J ∈B(HJ ) and ‖Rx,J ‖� εdJ +1. Let

α−(B)=L+V,

where

L =
∑

x∈I

PH′
x
, V =V1 +V2,

V1 =
∑

x∈I

∑

J�x

Rx,J PH′
x
, V2 =−c−|I |α−(α∗(A))A.
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We will prove that α−(B)−λ is invertible using the resolvent identity

(α−(B)−λ)−1 =
∞∑

k=0

(−1)k(L−λ)−1(V (L−λ)−1)k.

We will introduce a new norm ‖ · ‖I in H�o , which is equivalent to the
usual norm ‖ · ‖ but such that ‖V (L−λ)−1‖I < 1, which ensures that the
above series converges and the resolvent exists. To this end we decompose

H�o =⊕K⊂IG(I )
K ,

where

G(I )
K =H′

K ⊗�I\K,0 ⊗H�o\I

and set

‖v‖I =
∑

K⊂I

‖vG(I )
K

‖,

where vG(I )
K

is the projection of v to G(I )
K . Note that L|G(I )

K

=|K|1 and hence

‖V (L−λ)−1‖I = sup
K⊂I

sup
v∈G(I )

K‖v‖=1

‖V (L−λ)−1v‖I = sup
K⊂I

sup
v∈G(I )

K‖v‖=1

‖V v‖I

|K|−λ
. (33)

Note first that if K =∅ then V |G(I )
∅

=0 by assumption on A, hence supK⊂I

in the above formula can be restricted to sup over non-empty K. Next,
similarly to (22) one can prove

‖α−(α∗(A))‖� c
′|I |‖A‖, A∈B(HI )

with some constant c′ and hence, if ‖A‖�1,

‖V2‖I =‖c−|I |α−(α∗(A))A‖I �2|I |‖c−|I |α−(α∗(A))A‖� (2c′/c)|I | �1/3

if c is chosen larger than 6c′. Next, if v ∈G(I )
K then

V1v =
∑

x∈K

∑

J�x

Rx,J v.
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It’s easy to see that ‖Rx,J ‖I � 4|J |‖Rx,J ‖ (regardless of I ) because Rx,J ∈
B(HJ ). Therefore for v ∈G(I )

K

‖V1v‖I � |K|
∑

J�0

(4ε)dJ +1‖v‖,

which is not greater than |K|‖v‖/3 for ε small enough. So we see that for
a negative λ the r.h.s. of (33) does not exceed

sup
k=1,2,...

(k/3+1/3)/k =2/3,

which completes the proof.

Using inequalities (31) and (32), Lemma 3 and estimate (29), one
obtains an estimate of the form

ω(Qx)�
∑

y∈�o

ε|x−y|+1ω(Qy)+ ε dist (x,Z
ν\�o).

Our claim (27) then follows by iterations, as in Section 2.

Now we show how Lemma 2 can be used to prove the desired esti-
mate (5) of Theorem 2. First we claim that it suffices to establish it for
creation operators ûI . To see this take any operator A ∈ B(HI ) and rep-
resent it as α(α−(A)). Using the commutator expansion and Lemma 1, it
follows that:

α−(A)=
∑

J⊂�o

BJ , BJ ∈B(HJ ),

where

∑

J

‖BJ ‖ε−dJ,I � c|I |‖A‖, (34)

where dJ,I is the minimal length of a (not generally connected) graph con-
taining J and connecting any point of J with some point of I . Now, for
any J there is a (unique) expansion

BJ =
∑

K⊂J

û
(BJ )
K + B̃J , where B̃J �J,0 =0 (35)
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the vectors u
(BJ )
K ∈H′

K are determined from the expansion

BJ �J,0 =
∑

K⊂J

u
(BJ )
K ⊗�J\K,0.

Since ‖u(BJ )
K ‖�‖BJ ‖, we have

‖B̃J ‖� (2|J | +1)‖BJ ‖. (36)

By Lemmas 3 and 2

|ω(α(B̃J ))|� (ω(α∗(B̃J )α(B̃J )))1/2 �‖B̃J ‖c|J |/2|J |1/2ε dist (Z
ν\�o,J )/2.

Now using the estimates (34), (36) and the inequalities

dist (Z
ν \�o,J )� dist (Z

ν \�o, I)−dJ ;I , |J |� |I |+dJ ;I , (37)

one finds an estimate of the form
∣∣∣ω

( ∑

J⊂�o

α(B̃J )
)∣∣∣� c|I |ε dist (Z

ν\�o,I)‖A‖. (38)

Now if ω′,ω′′ are two different ground states in �, then

|ω′(A)−ω′′(A)| �
∣∣∣

∑

J⊂�o

∑

K⊂J

ω′(α(̂u
(BJ )
K )

)−ω′′(α(̂u
(BJ )
K )

)∣∣∣

+
∣∣∣ω′( ∑

J⊂�o

α(B̃J )
)∣∣∣+

∣∣∣ω′′( ∑

J⊂�o

α(B̃J )
)∣∣∣

�
∑

J⊂�o

∑

K⊂J

∣∣ω′(̂u(BJ )
K )−ω′′(̂u(BJ )

K )
∣∣+2c|I |ε dist (Z

ν\�o,I)‖A‖.

Using again (34) and (37), we see that if Theorem 2 holds for operators
ûI , then it holds for all operators (perhaps with a larger constant c1).

In order to show that Theorem 2 holds for these special operators we
develop a system of linear equations for their averages. Let K be the linear
space of operators of the form

û =
∑

∅�=I⊂�o

ûI .
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We will obtain below an equation of the form

û =T1̂u +T2̂u +T3̂u (39)

with some linear operators T1,T2,T3, where T1 : K → K is a contraction,
T2̂u is a scalar operator, and T3̂u has small ω-average. To this end, take
some nonempty I ⊂ �o, fix some x ∈ I and let I ′ = I \ {x}. Let uI ∈ H′

I .
Choose an orthonormal basis ux,1, ux,2, . . . in H′

x and consider the expan-
sion

uI =
∑

k

ux,k ⊗uI ′,k,

where uI ′,k ∈H′
I ′ and

∑
k ‖uI ′,k‖2 =‖uI‖2. Note that by Cauchy inequality

∣∣∣
∑

k

ω(α∗(̂u∗
x,k )̂uI ′,k)

∣∣∣�
(∑

k

ω(α∗(̂u∗
x,k)α(̂u∗

x,k))
)1/2(∑

k

ω(̂u∗
I ′,kûI ′,k)

)1/2

= (ω(Qx))
1/2‖uI‖(ω(P�I ′,0))

1/2 �‖uI‖ε dist (x,Z
ν\�o). (40)

On the other hand we write

∑

k

α∗(̂u∗
x,k )̂uI ′,k =α

(∑

k

α−(α∗(̂u∗
x,k))̂uI ′,k

)
(41)

and then expand α−(α∗(̂u∗
x,k)) into a commutator series. As a result we

obtain on the r.h.s. an expression of the form α(. . . ) with the leading term
in brackets being

∑
k ûx,kûI ′,k = ûI , other terms being of the form

∑

k

Aûx,kBûI ′,k (42)

with some operators A,B. It is easy to see that for any A,B the series (42)
strongly converges to an operator C with

‖C‖�‖A‖‖B‖‖uI‖. (43)

If A∈ B(HJ ),B ∈B(HK), then C ∈B(HI∪J∪K). We consider next for any
such C the expansion

C =
∑

L⊂I∪J∪K

v̂
(C)
L + C̃ (44)
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with C̃�I∪J∪K,0 =0. Note that here

v
(C)
L =0 if I \ (J ∪K) �⊂L. (45)

After these expansions the r.h.s. of (41) takes on the form

ûI +
∑

J⊂�o

v̂
(uI )
J +α(C̃(uI )),

where the second term is obtained as the sum of all creation operators
appearing in (44) for all terms in the commutator series (we use here the
identity α(̂vI )= v̂I ), and C̃(uI ) is the contribution from the operators C̃.
We define now

T1ûI = −
∑

∅�=J⊂�o

v̂
(uI )
J , T2ûI =−v̂

(uI )
∅ ,

T3ûI = ûI −T1ûI −T2ûI =
∑

k

α∗(̂u∗
x,k )̂uI ′,k −α(C̃(uI ))

and extend to K by linearity. Using the commutator expansion, Lemma 1
and (43), (45), we have

‖v(uI )
(I\J )∪K‖�‖uI‖εdJ∪K∪{x} (46)

and also, like in (38),

∣∣ω
(
α(C̃(uI ))

)∣∣� c|I |ε dist (Z
ν\�o,I)‖uI‖. (47)

Suppose that K is equipped with the norm

‖
∑

∅�=I⊂�o

ûI‖K =
∑

∅�=I⊂�o

‖uI‖c|I |ε dist (Z
ν\�o,I).

Using the inequality (46) with ε small enough, one finds that ‖T1‖K <1/2.
Now for any ground-state ω we have

ω(̂u)=ω(T1̂u)+ω(T2̂u)+ω(T3̂u).
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Since T2̂u is a scalar operator, the second term in the r.h.s. is the same for
all states. Suppose that we have two ground states ω′,ω′′, then

ω′(̂u)−ω′′(̂u)=ω′(T1̂u)−ω′′(T1̂u)+ω′(T3̂u)−ω′′(T3̂u).

If f ∈K∗ is a continuous linear functional on K, then its norm is given by

‖f‖K∗ = max
∅�=I⊂�o

sup
‖uI ‖=1

|f (̂uI )|c−|I |ε−dist (Z
ν\�o,I).

Let f ′, f ′′ be the restrictions of the ground-states ω′,ω′′ to K, and g′,g′′ be
given by g′(̂u)=ω′(T3̂u),g′′(̂u)=ω′′(T3̂u). It follows that:

f ′ − f ′′ =T ∗
1 (f ′ − f ′′)+g′ −g′′,

where T ∗
1 is the adjoint of T1 and ‖T ∗

1 ‖K∗ =‖T1‖K �1/2. Using estimates
(40) and (47), one finds that ‖g′‖K∗ ,‖g′′‖K∗ �2. It follows that:

‖f ′ − f ′′‖K∗ �8,

which yields the desired estimate (5) for operators ûI .

APPENDIX. GROUND STATES OF OPEN QUANTUM SYSTEMS

In this Appendix, we want to explain how a boundary condition can
be explicitly defined for a state satisfying Definition 2. We adopt here a
more abstract setting and also assume for simplicity all the Hilbert spaces
to be finite dimensional. Let H be a Hamiltonian (≡ any self-adjoint oper-
ator) acting on a Hilbert space H. As usual, a state ω on B(H) is said to
be a ground state of H if it minimizes the expectation ω(H). It is a simple
exercise to check that a state ω is a ground state if and only if

ω(A∗[H,A])�0 (A.1)

for any A∈B(H).
Let us now consider an open system with the Hilbert space Hi ⊗Hb,

where Hi describes the “internal” part and Hb the “boundary” part. Sup-
pose that its evolution is governed by a Hamiltonian H1 (acting on Hi ⊗
Hb), but the boundary can also interact with some “external” degrees of



142 Yarotsky

freedom forming a Hilbert space He, via a Hamiltonian H2 (acting on
Hb ⊗He), so that

H =H1 +H2

is the full Hamiltonian, acting on Hi ⊗ Hb ⊗ He. Suppose now that ω is
a ground state of H . Let ω1 be the restriction of ω to B(Hi ⊗Hb). Note
that [H,A]= [H1,A] for A∈B(Hi ), so using (A.1) we find

ω1(A
∗[H1,A])�0 for A∈B(Hi ). (A.2)

One can ask now if the converse holds: given a Hilbert space Hi ⊗ Hb,
a Hamiltonian H1 on it and a state ω1 obeying can one find a Hilbert
space He and a Hamiltonian H2 on Hb ⊗He such that ω1 is a restriction
of a ground state of H1 +H2? It turns out to be true if “infinitely strong”
interactions are allowed (we need to compactify the space of interactions,
because the set of ground states is compact). We say that H2 is a gener-
alized Hamiltonian on Hb ⊗ He if H2 is actually a self-adjoint operator
on a subspace G ⊂ Hb ⊗ He,G �= {0} (so that formally (H2v, v) = +∞ for
v ∈Hb ⊗He \G). If H1 is a usual Hamiltonian on Hi ⊗Hb, then the sum
of H1 and H2 is a self-adjoint operator on Hi ⊗G, defined as a quadratic
form

(Hv, v)= (H1v, v)+ (H2v, v), v ∈Hi ⊗G. (A.3)

Any state on B(Hi ⊗ G) (and in particular a ground state of H ) can be
considered as a state on B(Hi ⊗Hb ⊗He) and hence restricted to B(Hi ⊗
Hb). Now we can state

Proposition. Let H1 be a Hamiltonian on Hi ⊗Hb and ω1 a state
on B(Hi ⊗Hb). Then the two conditions are equivalent

(1) ω1(A
∗[H1,A])�0 for all A∈B(Hi ),

(2) there exists a Hilbert space He and a generalized Hamiltonian H2
on Hb ⊗He such that ω1 is a restriction of a ground-state ω of H , defined
as in (A.3), to B(Hi ⊗Hb).

Proof. We prove (1)⇒(2) (the converse implication is straightfor-
ward). We define ω simply as a purification of ω1: choose some He

and a unit vector w ∈ Hi ⊗ Hb ⊗ He such that (Aw,w) = ω1(A) for all



Uniqueness of the Ground State 143

A ∈ B(Hi ⊗ Hb), then set ω(·) := (·w,w). Next we take a biorthogonal
decomposition of w

w =
∑

k

uk ⊗vk,

where {uk} is an orthonormal family in Hi and {vk} an orthogonal family
in Hb ⊗He with all ‖vk‖>0. Let subspaces F and G be spanned by {uk}
and {vk}, respectively. Below we will define the operator H2 on the sub-
space G. Let H1w =w′ =w′

1 +w′
2, where w′

1 and w′
2 are projections of w′

on Hi ⊗ G and Hi ⊗ (Hb ⊗ He � G), respectively. Note that condition (1)
implies

ω1([H1,A])=0 for A∈B(Hi )

(stationarity of ω1). Indeed, this follows by substituting A+ t for A in con-
dition 1) and equating in the resulting, linear in t expression the t coeffi-
cient to 0. Now if Ran A⊂Hi �F then F ⊂ker A∗ and hence

0=ω1([H1,A])= (Aw,H1w)− (H1w,A∗w)= (Aw,w′)= (Aw,w′
1).

It follows that w′
1 ∈F ⊗G and therefore there exists a (unique) linear oper-

ator H2 on G such that w′
1 =−H2w. Let us show that H2 is self-adjoint.

Let Akl be a matrix unit in the {uk} basis

Akluk =ul, Akl |Hi�uk
=0

so that A∗
kl =Alk. Using again the stationarity, we have

0= ([H1,Akl ]w,w)= (Aklw,w′
1)− (w′

1,Alkw)=−(vk,H2vl)+ (H2vk, vl),

which proves the self-adjointness. Now it remains to check that if H is
defined by (A.3) then w is its ground-state vector. Since [H2,A] = 0 for
A∈B(Hi ), by condition (1) for such A

0� ([H1 +H2,A]w,Aw)= ((H1 +H2)Aw,Aw),

because (H1 +H2)w =w′
2 ∈Hi ⊗ (Hb ⊗He �G), whereas {Aw|A∈B(Hi )}=

Hi ⊗G. It follows that if H is defined as in (A.3), then Hw=0 and (Hv, v)�0
for all v ∈Hi ⊗G, which proves that ω is a ground state of H .
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The above Proposition makes the meaning of Definition 2 more clear.
The inner spins from �o interact only with other spins in � as prescribed
by the formal Hamiltonian, while the boundary spins from � \ �o are
allowed to interact with some external degrees of freedom in an arbitrary
manner. Definition 2 then describes the restriction of a ground state of the
whole system to B(H�).
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